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Computations of violent surface motions:
comparisons with theory and experiment

B y J. C. W. Rogers1 and W. G. Szymczak2†
1Department of Applied Mathematics and Physics,
Polytechnic University, Brooklyn, NY 11201, USA

2Naval Surface Warfare Center, Silver Spring, MA 20903, USA

A numerical implementation of a generalized hydrodynamics has been used to com-
pute a number of violent surface motions (characterized by the collision of different
portions of the free surface). For some of these motions, singular aspects of the
surface evolution may be analysed theoretically. Comparisons of the output of the
calculations with theoretical predictions are made for these cases. In a second test of
the predictions of the generalized hydrodynamics, the evolution of a plume generated
by underwater explosions is compared with a computed plume history. An important
diagnostic tool for studying violent surface motions has been analysis of the sum of
the kinetic and internal energies of the flow. Accordingly, we include some results of
an investigation into mechanisms for energy dissipation, as well as a description of
some relations between energy loss and modes of cavity collapse.

1. Introduction

A framework to deal with hydrodynamic phenomena which are difficult to treat in
classical formulations has been developed and numerically implemented. This frame-
work is referred to as the ‘generalized formulation of hydrodynamics’. Here we will not
describe the generalized framework or the numerical implementation in detail. Such
descriptions may be found in Rogers (1978a, b), Rogers et al. (1990) and Szymczak
et al. (1991, 1993). More recently, a code has been written to treat three-dimensional
flows in generalized coordinates. Computations using this code have been described
at a recent symposium on cavitation Szymczak et al. (1995). A complete description
of the three-dimensional code may be found in Szymczak et al. (1997).

In this section we offer a summary of the algorithmic prescription for solving
flow problems which constitute the generalized formulation of hydrodynamics. We
will primarily pay attention to the ‘physical’ aspects of the flows which are not
accounted for in the classical formulation of hydrodynamics. We will say a few words
regarding why we have chosen this generalized formulation; obviously, the process of
generalization can be continued indefinitely. It will be apparent from the comments
in §4, on mechanisms of energy dissipation, that the generalized hydrodynamics
we offer still has many basic unsolved problems (as is the case also with classical
hydrodynamics).

† Present address: Physical Acoustics Branch, Code 7131, Naval Research Laboratory, Washington,
DC, 20375, USA.
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650 J. C. W. Rogers and W. G. Szymczak

The second section of the paper presents the results of some computations us-
ing the generalized hydrodynamics and compares them with theoretical predictions.
The third section compares observed and calculated properties of plumes formed
by underwater explosions. A unifying purpose of this paper is to build confidence
in the generalized hydrodynamics we have developed as a reasonable approach to
the treatment of a number of phenomena which fall outside the purview of classical
hydrodynamics.

What makes the generalized hydrodynamics ‘general’ is that it recasts the physical
system of an inviscid incompressible fluid, with a free surface and contained by rigid
boundaries, as a set of conservation laws for mass and momentum, subject only to
an upper constraint on the mass density. The ‘conservation laws’ are, in the presence
of gravity,

ρt +∇ · (ρu) = 0, (1.1)
(ρu)t +∇ · (ρuu) = −ρgk, (1.2)

and the constraint is
ρ 6 ρ0. (1.3)

The ‘pressure’ does not appear here explicitly, but, as will be described below, only
implicitly in the process of satisfying the constraint (Rogers 1978a).

Although cast as partial differential equations, (1.1) and (1.2) admit weak solu-
tions which are not differentiable (Rogers 1978a). For weak solutions, u need not be
continuous, and ρ need not even be bounded. The constraint (1.3) does not require
that space be delineated into regions, separated by a sharp boundary, where either
ρ = ρ0 or ρ = 0, as is assumed in the classical theory. There is also the possibility of
having regions 0 < ρ < ρ0, called ‘sprays’; in these regions, there is no pressure. As
we shall see below, the pressure only enters overall as a Lagrange multiplier when
the constraint (1.3) is sharp, i.e. ρ = ρ0.

Since the velocity field can be discontinuous, we have the possibility of collisions.
A feature of our formulation is that collisions are assumed to be inelastic, introducing
the possibility of energy loss and irreversibility for inviscid flows. This assumption
is not necessary, but reasons for its suitability, in a first generalization of classical
hydrodynamics, are provided in §4 of the paper.

Another limitation is provided by the assumption that the system can be described
by a single velocity field u at each point, that is, that a kinetic model is not needed.
Especially for the spray region, this assumption may be called into question. In
defence of this assumption, we cite a recent paper (Leung & Rogers 1997) in which
solutions of a model Boltzmann equation with a simple interaction term evolve into
solutions of (1.1) and (1.2).

The generalized hydrodynamics is stated in the form of an algorithm which carries
us from the flow (ρn,un) at time tn (the superscripts label the time) to the flow
(ρn+1,un+1) at time tn+1 = tn + τ . In this algorithm, the constraint (1.3) is satisfied
by restricting ourselves to initial data with ρ(x, 0) 6 ρ0 and by requiring that

dρ
dt

= ρt + u · ∇ρ 6 0, when ρ = ρ0. (1.4)

In view of (1.1), this is equivalent to requiring that

∇ · u > 0, when ρ = ρ0. (1.5)

The first step of the algorithm solves (1.1) and (1.2) approximately, without the
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constraint (1.5), for the time τ , yielding a flow (ρ̃, ũ). One way of doing this is to
let the distribution function f(x,v, t) be the solution of a ‘collisionless Boltzmann
equation’,

ft + v · ∇f − g ∂f
∂vz

= 0, (1.6 a)

with initial data
f(x,v, 0) = ρn(x)δ(v − un(x)). (1.6 b)

In terms of f(x,v, t), the intermediate ‘convective’ mass density and velocity can be
calculated according to

ρ(x, t) =
∫
f(x,v, t− tn) dv, (1.6 c)

and

ρ(x, t)u(x, t) =
∫
vf(x,v, t− tn) dv. (1.6 d)

By integrating (1.6 a) over all values of v, we find that ρ and u given by (1.6 c) and
(1.6 d) always satisfy (1.1). Multiplying (1.6 a) by v, and integrating over all values
of v, we find that ρ and u also satisfy (1.2) when the characteristics dx/dt = u(x, t)
do not intersect (collide). Whether or not such collisions take place, we calculate
values of the mass and momentum densities at the end of the convective step from

ρ̃ =
∫
f(x,v, τ) dv, (1.7 a)

and

ρ̃ũ =
∫
vf(x,v, τ) dv. (1.7 b)

In the second step of the algorithm, excesses of ρ̃ over ρ0 are removed, and the
velocity ũ is simultaneously corrected, by solving a ‘Stefan–Boltzmann’ equation:

fα(x,v, α) = ∇2
(
f(x,v, α)

(θ(x, α)− ρ0)+

θ(x, α)

)
, (1.8)

where

θ(x, α) =
∫
f(x,v, α) dv (1.9)

is the intermediate mass density and

f(x,v, 0) = ρ̃(x)δ(v − ũ(x)). (1.10)

Here α is the ‘fast time’ describing a rapid diffusion of density excesses, and (1.8) is
run to steady state. Integrating (1.8) over v leads to the nonlinear diffusion equation

θα(x, t) = ∇2(θ(x, t)− ρ0)+, (1.11)

which is the equation governing a one-phase Stefan problem (Rubenstein 1971). The
steady state value of θ is ρn+1(x) 6 ρ0. Integrating (1.11) over α yields

ρn+1 = ρ̃+∇2H, (1.12)

where

H(x) =
∫ ∞

0
(θ(x, t)− ρ0)+ dα (1.13)
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satisfies the variational inequality

∇2H =

{
ρ0 − ρ̃, if H > 0,

0, if H = 0.
(1.14)

During the diffusion process, the intermediate velocity ξ(x, α) is given by

θ(x, α)ξ(x, α) =
∫
vf(x,v, α) dv. (1.15)

Multiplying (1.8) by v and integrating over α gives us
∂

∂α
(θ(x, α)ξ(x, α)) = ∇2(ξ(x, α)(θ(x, t)− ρ0)+). (1.16)

When θ(x, α) is known, (1.16) is a linear parabolic equation for ξ(x, α). Let ū(x) be
the velocity at the end of the diffusion process, that is,

ū(x) = ξ(x,∞). (1.17)

Integrating (1.16) over α leads to

ρn+1ū = ρ̃u+∇2
∫ ∞

0
ξ(x, α)(θ(x, α)− ρ0)+ dα. (1.18)

We approximate (1.18) by replacing ξ(x, α) on the right-hand side by its terminal
value ū, as given in (1.17). Thus, we solve the linear elliptic equation

ρn+1ū = ρ̃u+∇2(Hū) (1.19)

for the redistributed velocity field .
For classical fluid flows without collisions, the second step of the algorithm gives

only contributions which are of higher order in τ , and may be omitted. However, when
fluid surfaces collide, it is important. This step, which distinguishes our method from
the ‘volume of fluid’ approach of Hirt & Nichols (1981) or Kothe & Mjolsness (1992),
is mass conserving. Both the momentum redistribution (1.18) and its approximation
(1.19) have the property that the global energy cannot increase, and may decrease,
depending on the flow dynamics. The importance of the redistribution steps (1.12)
and (1.19) has also been examined numerically in Szymczak (1994).

The final step of the algorithm carries us from (ρn+1, ū) to (ρn+1,un+1). This
involves a correction of the momentum density so that the constraint (1.5) is satisfied.
This is done by ‘projecting’ in L2({x : ρn+1(x) > ρ0}) the momentum onto the set
of momenta satisfying (1.5). The projection involves the addition of the gradient of
a Lagrange multiplier to the momentum. Since the correction pertains to changes
which have taken place over a time interval τ , it can be expected that the Lagrange
multiplier is proportional to τ , and hence we write it as −Pτ :

ρn+1un+1 = ρn+1ū−
{
∇(Pτ), if ρn+1 = ρ0,

0, if ρn+1 < ρ0.
(1.20)

For classical flows, ∇P becomes the rate of change of the momentum density with
time, and P is the pressure. We continue to call P the ‘pressure’ for generalized flows.
For classical flows the projection of the momentum density gives a Poisson equation
for P . For generalized flows we obtain instead the variational inequality

∇2(Pτ) =

{
ρn+1∇ · ū, if P > PC

0, if P = PC.
(1.21)

Phil. Trans. R. Soc. Lond. A (1997)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Computations of violent surface motions 653

Here, PC is the cavitation pressure of the liquid (often taken to be zero). There is a
further connection between P and the function H given in (1.14). This is discussed
in Rogers (1978a). Additional details describing this step appear in Rogers et al.
(1990) and Szymczak et al. (1993).

In our numerical implementation of the algorithm, we solve (1.1) and (1.2) by us-
ing a second-order Godunov method with monotonized upwind slope limiting (Davis
1988). In the second step of the algorithm, a piecewise linear finite-element dis-
cretization is used for the Laplacian and a constrained conjugate gradient method
with preconditioning is employed to find H satisfying (1.14). The momentum re-
distribution is performed by first transforming (1.15) into a symmetric self-adjoint
degenerate elliptic problem. A standard discretization yields a matrix equation which
is efficiently solved using a diagonally preconditioned conjugate gradient method. For
the final step, the velocity ū is projected onto its discretely divergence-free subspace
at points where the inequality (1.5) becomes an equality. This step is discretized
using a standard finite element method in which the pressure belongs to the space of
continuous bilinear (in two-dimensional) or trilinear (in three-dimensional) functions.
An analysis of this approximate projection method (when there is no pressure con-
straint) appears in Almgren et al. (1996). In general, when the pressure constraint is
imposed the pressure is determined through the solution of a variational inequality.
The spatially discretized problem becomes a linear complementarity problem which
is solved using a constrained direction preconditioned conjugate gradient method
described in Szymczak et al. (1993). The importance of using a discretization of the
variational inequality for the pressure as opposed to simply truncating the solution
to the linear problem has been discussed in detail in Szymczak et al. (1995).

Details of the numerical discretizations for the BUB2D code (two-dimensional
or axially symmetric problems on a tensor product grid) have been given in the
references (Rogers et al. 1990; Szymczak et al. 1993). The code BUB3D includes a
capability for Lagrangian grid motion, as well as the ability to solve three-dimensional
problems in generalized coordinates (Szymczak et al. 1997). These same references
also include the treatments of rigid boundaries, as well as interfaces across which
the pressure is prescribed. Some of the flows computed in §§ 2–4 involve these more
general boundary conditions.

The outline of the generalized hydrodynamics given above is for inviscid flows
without surface tension. Extensions to viscous flows and to fluids with surface tension
have been described in Rogers (1992) and, in the case of viscosity, have been put in
numerical form.

2. Comparison of computational and analytical results

In this section we subject our treatment to some severe tests by comparing its
predictions with theoretical predictions in two different cases in which the surface is
subjected to violent motion.

For the first example, we consider the collision of two concentric cylinders of in-
compressible liquid surrounded by a region ρ = 0. Initially, the cylinders are moving
in the vertical direction only along the axis of symmetry. The top cylinder has radius
1 and is moving downward with velocity v = −4.0. The bottom cylinder has radius
2 and is moving upward with velocity v = 1.0. Both cylinders have unit height. The
initial distance between the cylinders is 0.2, so that the time of impact is t = 0.04,
(see figure 1).
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654 J. C. W. Rogers and W. G. Szymczak

Figure 1. Greyscale density contours and velocity vectors of the collision of two concentric
cylinders of an incompressible liquid. The medium grey colour represents densities 0.5 6 ρ 6 ρ0.
Lighter shades of grey correspond to 0 6 ρ 6 0.5ρ0, with white representing the region where
ρ = 0.

Let us denote by z∗ the value of z at which the cylinders make initial contact, and
by R the union of the cylinders and their common surface at the moment of impact.
At the instant of impact the momentum density of the fluid is changed impulsively
by the amount ∇I, where I is the solution of the Dirichlet problem

δI = −5ρ0δ(z − z∗), (2.1)

when (r, z)εR, and
I = 0 on ∂R. (2.2)

It is easily seen that the singularity of ∇I at the circle (1, z∗) is the same as the
singularity of ∇I∗ at (1, z∗), where I∗ is the solution of the Dirichlet problem

I∗rr + I∗zz = −5ρ0δ(z − z∗), (2.3)

for (r, z)εR, with the boundary conditions (2.2). A simple transformation that
‘straightens out’ the interior angle of 3

2π in R at (1, z∗) shows that the momen-
tum densities −∇I and −∇I are normal to ∂R on the boundary, and that their
normal components can be written in the form

− ∂I

∂n
= A(r, z)((r − 1)2 + (z − z∗)2)−1/6, (2.4)

where A(r, z), restricted to (r, z)ε∂R, is continuous, and A(1, z∗) > 0. The velocity
of the fluid emerging from points (1, z > z∗)ε∂R will be in the direction of increasing
r, that from points (r > 1, z∗)ε∂R will be in the direction of increasing z. Elements
of fluid from a neighbourhood of (1, z∗) in ∂R will combine to form a stream moving
upward and outward from (1, z∗) at an angle of 45◦ in the (r, z) plane. The magnitude
of the velocity at points in the combined stream will be proportional to the values
of −∂I/∂n at the points from which they originated at the instant of impact. Thus,
according to (2.4), this magnitude will not be bounded uniformly for elements in the
stream, but will behave like d−1/3 where d is the distance from (1, z∗) to the point
on the surface from which each element originated.

In order to test this prediction, computer runs were made for five computational
grids. The number of cells used for the grids was N ×N with N = 30, 60, 120, 240
and 480. The cells were square and had size h = 3/N . Uniform time steps were taken
with τ = 0.025 h. Figure 1 shows greyscale density contours and velocity vectors (at
every 16th cell) for the run with N = 60 at the initial time, time of impact, and at
t = 0.1 and t = 0.19. A jet emerges from (1, z∗) at the time of impact, as predicted.

A more quantitative comparison with the theory may be made by tabulating the
maximum computed speed in the grid at the time of impact. Since the discrete
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Table 1. Maximum computed speeds for the collision problem

N max |u(t0)| rate

30 4.432
60 6.226 0.490

120 8.964 0.526
240 11.555 0.366
480 15.059 0.382

velocities are located at cell centres, it is expected that the maximum computed
speed at the time of impact will be proportional to h−1/3, for sufficiently small h.
The maximum speed Vh computed at the time of impact is shown in table 1 for
each of the five grids, of size h = 3/N , employed. The ‘rate’ computed in the last
column is simply log2(Vh/V2h). The computations give a value for this number which
is slightly higher than the predicted value of 1

3 .
The energy lost upon impact of masses of fluid has been given for a class of such

impacts in Rogers et al. (1990) and Szymczak et al. (1993). In the present case, this
energy loss, per unit length, is

− δE = 5
2πρ0

∫ 1

0
I(r, z∗)r dr. (2.5)

(Note that our definition of I differs from that in the references by a factor ρ0.) We
have already computed the energy loss for the case of impact of cylinders of equal
radii, and found the numerical value to agree well with the predicted value (Rogers
et al. 1990; Szymczak et al. 1993; Szymczak 1994). We could compute the energy
loss given by (2.5) also, but instead we have looked on the profile of energy as a
function of time as a measure of the convergence of our computational results. For
the case of impact of cylinders of equal radii, we found that the computed energy loss
converged to the theoretical energy loss at a rate that was first order in h (and τ).
Assuming that such a rate prevails in this case, we have plotted in figure 2 profiles
of the energy as a function of time for four of the computations, and we have also
given a profile extrapolated from the profiles for the computations with N = 120 and
N = 240, based on the assumption of first-order convergence. For the time interval
0.04 6 t 6 0.3, the extrapolated values had a minimum of 0.778 096, an average of
0.780 147 and a maximum of 0.781 057.

The second test of our numerical method concerns the flow generated by a wave-
maker, which in this case is a wall moving impulsively into a fluid initially at rest
and occupying a rectangular basin (in cross section). The reason for performing this
test is that we have computed extensive profiles of breaking and splashing waves
generated by a wavemaker (not shown in this paper), and we want to make some
benchmark computations for such motions, in order to gain confidence in their ac-
curacy. The number of theoretical predictions or experimental measurements with
which we can compare our computational results is so far rather limited.

The calculations for the impulsively moving wall were performed using BUB3D,
with a Lagrangian motion of the left wall. The results were made non-dimensional
by selecting ρ0 = g = U = d = 1, where g is the acceleration due to gravity, U is
the uniform speed of the wall at the left and d is the initial water depth. Initially a
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Figure 2. Computed energies for the collision problem. The extrapolated values were
determined using the formula E(extrap)(t) = 2E(N=240)(t)− E(N=120)(t).

uniform grid of square cells was used in the region 0 6 x 6 1 and −1.0 6 z 6 0.5.
Due to the grid motion, the grid size in the x direction was reduced in time. Cell
stretching was used in the x-direction for 1 6 x 6 10. At the right boundary (x = 10),
gridpoint velocities were extrapolated to zero and a hydrostatic pressure condition
was imposed. Figure 3 displays computed contours of ρ = 0.9ρ0 at time t = 0.1, using
three different grids as well as predictions based on asymptotic approximations by
Roberts (1987) and Joo et al. (1990). The configuration used in Roberts’ study differs
from ours, in that the initial water depth is infinite, but only the portion of the left
wall with −d 6 z is moved. King & Needham (1994) have discerned some faults in
the early-time analysis of Joo et al. (1990) for the case of a uniformly accelerating
wall. Roberts predicts a wave height at the left wall at time t = 0.1 of 0.384, while
Joo et al. (1990) arrive at a value close to 0.4. On the finest grid we used (which
still grossly under resolved the wave profile), the computed height was 0.358. The
closer agreement at the wall using the coarser grids is merely fortuitous. Overall,
the computed solutions appear to be approaching the asymptotic solutions, despite
under resolving the wave profile.

3. Plume formation and evolution

A comparison with experiment has been made. Figure 4 shows photographs of the
evolution of the plume formed by a shallow-depth explosion. Side-by-side with the
photographs are computational results for the bubble evolution and plume formation
and evolution, for the same times. The explosion bubble is modelled as an initially
spherical region (ρ = 0), with volume V0 and uniform pressure P0. At later times
the bubble pressure is determined using the adiabatic assumption PBV

γ
B = P0V

γ
0 ,

where γ is the ratio of specific heats of the bubble gases. For the problem under
consideration, the scaled depth, defined to be the initial charge depth divided by the
maximum free field bubble radius, was 0.67. Figure 4 clearly shows that the plume’s
height and duration have been accurately reproduced. Note also the prediction of
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Figure 3. Computed free surface elevations adjacent to an impulsively started moving wall.

Figure 4. Photographs and computations of a shallow depth explosion.

the radial plumes ejected upon the bubble’s second expansion as a toroidal region.
The final time t = 5.94 is 11 times larger than the bubble period. The computation
was performed using a 96 × 300 grid. About 4000 time steps were taken for the
computation, which was executed in approximately 18 h on an HP 9000–735 work
station. This problem has been studied in greater detail in Szymczak & Solomon
(1996), where quantitative comparisons of the plume density are also made.

4. Causative factors for energy dissipation

As noted in the introductory section, kinetic energy loss is possible when portions
of the fluid collide. Since energy loss does not occur for classical inviscid flows, the
behaviour of the energy is an important indicator of the degree to which non-classical
motions are taking place. Indeed, the behaviour of the total energy has also been
used to test the convergence of the numerical procedure as the computational grid
is refined. We have seen already an example of this in the study of the collision of
cylinders of fluid of unequal radii in §2.

The possibility of energy dissipation in collisions has been a source of contention in
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some quarters, but some have accepted it as a reasonable representation of the physics
of fluid collisions (Zhang et al. 1993). The question has been raised, quite naturally,
whether energy loss would occur if one considered collisions of slightly compressible
fluids, and then took the limit in which the sound speed became infinite.

To answer this question, we first recapitulate the one-dimensional incompressible
flow given by solving (1.1)–(1.3) with g = 0 and with initial and boundary data

ρ(x, 0) =

{
ρ0, if 0 < x < H,

0, if x > H,
(4.1)

ρ(x, 0)u(x, 0) =

{
−ρ0, U if 0 < x < H,

0, if x > H,
(4.2)

and
u(0, t) = 0. (4.3)

These are the initial conditions for a flow which collides with the wall at x = 0 at
time t = 0+. For this flow, the generalized hydrodynamics says that the collision
will be wholly inelastic, giving ρ(x, t)u(x, t) = 0 for t > 0. It is, of course, possible
to imagine another solution of equations (1.1) and (1.2) (with g = 0) in which the
flow for t > 0 consists of a slug of fluid of density ρ0 and height H travelling to the
right with speed U . This is the perfectly elastic case. Flows for which the evolution is
intermediate between the perfectly elastic and perfectly inelastic extremes may also
be constructed (Rogers 1977).

Now consider a compressible version of the incompressible collision. The initial
and boundary conditions (4.1)–(4.3) remain, but (1.2) and (1.3) are replaced by

(ρu)t +∇ · (ρuu) = −∇P, (4.4)

and an equation of state linking P and ρ. Let us consider the case

P (ρ) = c2(ρ− ρ0)+, (4.5)

where c > 0 is constant, and let us obtain the solution to (1.1), (4.4), (4.5) with
initial and boundary conditions (4.1)–(4.3) when c > U .

Defining ρ1 and t0 by

ρ1 = ρ0

(
1 +

U

c

)
(4.6)

and

t0 =
Hρ0

cρ1
, (4.7)

we have for the solution of the problem for 0 < t < t0:

ρ(x, t) =


ρ1, for 0 < x < ct,

ρ0, for ct < x < H − ut,
0, for x > H − Ut,

(4.8)

and

ρ(x, t)u(x, t) =

{
−ρ0U, if ct < x < H − ut,

0, elsewhere.
(4.9)
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Equations (4.8) and (4.9) describe a shock wave of strength U/c.
Corresponding to the pressure function (4.5), we find an internal energy per unit

mass

e =
∫
−P (ρ) d

(
1
ρ

)
= c2

(
ln
(
ρ

ρ0

)
+
ρ0

ρ
− 1
)
. (4.10)

At time t = 0, e = 0 in the flow, and the kinetic energy per unit mass is 1
2U

2. At
time t0, there is no kinetic energy and the internal energy per unit mass is

c2
(

ln
(
ρ1

ρ0

)
+
ρ0

ρ1
− 1
)
. (4.11)

Expanding (4.11) in powers of U/c, we find that the total energy per unit mass at
time t0 is approximately

1
U2 −

2U3

3c
.

That is, the sum of kinetic and internal energies per unit mass has its value reduced
in the collision by a fraction (4U)/(3c). This reduction is a familiar concomitant of
shock waves (Landau & Lifshitz 1959), and the ‘loss’ of energy is generally identified
with a production of entropy in the collision.

Continuing with the solution of equations (1.1), (4.4), and (4.5), we find, for t0 <
t < 2t0,

ρ(x, t) =


ρ1, 0 < x < X1(t),

ρ1e−(x−X1(t))/(c(t−t0)), X1(t) < x < X2(t),
ρ0, X2(t) < x < X3(t),
0, x > X3(t),

(4.12)

and

u(x, t) =



0, 0 < x < X1(t),

x−X1(t)
t− t0 , X1(t) < x < X2(t),

c ln
(
ρ1

ρ0

)
, X2(t) < x < X3(t),

(4.13)

where

X1(t) =
Hρ0

ρ1
− c(t− t0), (4.14 a)

X2(t) = X1(t) + c(t− t0) ln
(
ρ1

ρ0

)
, (4.14 b)

X3(t) =
Hρ0

ρ1
+ c(t− t0) ln

(
ρ1

ρ0

)
. (4.14 c)

As expected, the sum of kinetic and internal energies remains constant in this phase
of the motion. If we continue the solution further in time, we eventually find a
region bordering the wall at x = 0 in which ρ(x, t) < ρ0 and the velocity u(x, t) <
c ln(ρ1/ρ0). To the ‘right’ of this region we have ρ(x, t) = ρ0 and u(x, t) = c ln(ρ1/ρ0).

In the whole process, only a fraction (4U)/(3c) of the energy has been ‘lost’. Thus,
if we were to view our collision of an incompressible fluid as the limit, as c→∞, of
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the compressible collision, we would be led to the case of perfectly elastic collision.
That is, the fluid would ‘bounce off’ the wall.

However, suppose we were to view our connected incompressible flow as the limit
of a compressible flow with N components separated by small interstices, as might
happen when air is entrained with the liquid. Let the governing equations be (1.1),
(4.4) and (4.5), and let the initial and boundary conditions be

ρ(x, t) =

{
ρ0, 0(i− 1)(d+ η) < x < (i− 1)(d+ η) + d, 1 6 i 6 N
0, elsewhere,

(4.15)

u(x, t) = −U, for (i− 1)(d+ η) < x < (i− 1)(d+ η) + d, 1 6 i 6 N, (4.16)
and

ρ(0, t)u(0, t) = 0, (4.17)
where d = H/N . The width of each component is d and the interstices have width η.
Suppose that U/c is small but finite, η/d is small, and (dU)/(ηc) is also small. Then in
the time η/U that it takes for a component of fluid to travel the width of an interstice,
a wave will have propagated across the width d and back. In the limit c → ∞ the
component for i = 1 will immediately reverse direction. At time τ = η/(2U) it will
have traveled a distance 1

2η to the ‘right’ where it will be poised to collide with the
component i = 2. Those two components will collide, almost elastically, and after
an additional time τ the first component will be back at x = 0, ready to strike the
wall, and the second component will be back at its original position, travelling to
the right, and ready to collide with the third component. After time 2τi, the first
component will be ready to collide with the wall, the second and third components
will be about to collide at x = 2d + η, the fourth and fifth at x = 4d + 2η, and the
2ith and (2i+ 1)th components will be about to collide at x = 2id+ iη. After time
(2i + 1)τ , the first and second components will be ready to collide at x = d + 1

2η,
the third and fourth will be about to collide at x = 3d + ( 3

2)η, and the (2i + 1)th
and (2i + 2)th components will be about to collide at (2i + 1)(d + 1

2η). The Nth
component will collide at (N − 1)τ , and then will continue its motion away from the
wall unimpeded. It will be followed by the (N − 1)th component a time τ later, and
so on. Eventually all the components will have reversed their initial velocity by time
2(N − 1)τ . This is the picture if U/c→ 0 and N is finite.

Suppose, however, that U/c is small, but thatN(U/c) is large. A typical component
will undergo O(N) collisions with its neighbors. In each collision it will lose a fraction
O(U/c) of its energy. After N collisions the energy of the fluid will have been reduced
by a factor O(exp (−αNU/c)), where α is a constant. Thus, for a sufficiently large
N virtually all the energy will be lost.

Energy may be lost in a variety of modes. The initial and boundary conditions
(4.1)–(4.3) can be considered to model the last stage of the collapse of a one-
dimensional cavity. Similar models have been worked out for the collapse of a cylin-
drical and of a spherical cavity in Rogers (1977).

Consideration of the collapse of a cavity with walls which are only near planar
leads us to expect that the one-dimensional cavity collapse described by (4.1)–(4.3)
is really an approximation to a collapse in which numerous three-dimensional cavities
are formed and collapse. Since the local energy concentrations are high in flows just
before the collapse of a three-dimensional cavity (Rogers 1977), it is of some practical
importance (for example, in predicting damage to structures in the water) to inquire
as to how the energy is actually dissipated.
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We remark that cavity collapse and the resulting collision of walls of fluid, as well
as the collision of disconnected components of fluid, are all manifestations of Kelvin–
Helmholtz instability, associated with loss of Lipschitz continuity in the velocity
field. Kelvin–Helmholtz instability in its classical form, involving a vortex sheet,
arises naturally out of collision phenomena. As an example, there may be a vortex
sheet following the breakthrough of a re-entrant jet formed during the evolution
of an underwater bubble (Zhang et al. 1993). Similar situations occur whenever
‘Lagrangian points’ run together (as when waves break, spill over, and impact on
a water surface). The manner in which energy is dissipated by Kelvin–Helmholtz
instabilities appears not to have been analysed in a satisfactory manner.

When cavities collapse completely, our generalized formulation of hydrodynamics
predicts an energy loss, as described above, even though one might imagine other sce-
narios of elastic, or partly elastic, collapse and rebound. However, when the cavity
does not collapse completely, our generalized formulation, like the classical treat-
ments, will predict elastic rebound. This happens, for example, when there is a cir-
culation about the cavity. If one studies the flow with circulation around a cylindrical
cavity, it can be seen (Rogers 1977) that the cavity never collapses. Instead, for fluid
occupying the region between two concentric cylinders, with the cross-sectional area
of the region occupied by the fluid denoted by A, the circulation of the fluid around
the inner cylinder denoted by C, the density of the fluid ρ0 and the kinetic energy of
the fluid per unit length denoted by E, we find for the minimum radius r0 achieved
by the inner cylinder in the course of the motion,

r0 =

√
A

π
(e8πE/ρ0C

2 − 1)−1/2. (4.18)

Accordingly, when the circulation C is very small, the minimum radius r0 becomes
exponentially small and yet the cavity does not collapse. Hence this small amount
of circulation has a big effect on the energy balance in the liquid.

At this point, the numerical implementation that we have devized for the general-
ized hydrodynamics, although not completely rigorous, can serve as a guide to what
will happen. As an example, we consider what happens when a body of water in a
vessel strikes a wall obliquely.

Our intuition about what happens when the free surface is tilted at an angle
of 30◦, with the wall against which it is to initially collide, is aided considerably
by computation. Some computed solutions are displayed in greyscale contours in
figure 5. The liquid region initially moves down with unit speed. The vessel has
vertical walls on each side and a horizontal bottom. The time of initial impact is
t = 0.1. After the tip of the liquid region touches the bottom wall, a horizontal jet
moving from right to left appears in the frames labeled t = 0.20 and t = 0.30. This jet
is turned upward after it strikes the left wall, as seen in the frame labeled t = 0.41. At
t = 0.52 the cavity (modelled as a region of constant pressure) is near its minimum
size and is surrounded by a strong recirculation of liquid. This recirculation causes the
cavity to re-expand at later times, in accordance with the discussion preceding (4.18).
The computational results depicted in figure 5 were computed using an 80 × 120
grid of uniform square cells of size h = 1/80. The computation was executed in
approximately 70 min on an HP 9000-735 work station.

Figure 6 shows computed energy profiles for the calculation displayed in figure 5,
and for computations performed on a coarser (40×60) grid and on a finer (160×240)
grid. From the time t = 0.1 of first impact until the time that the horizontal jet
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Figure 5. Computed density and velocity for the slanted impact problem. The computations
were performed using a 80× 120 grid.

Figure 6. Computed energies for the slanted impact problem. Uniform grids of size h = 1/N
were used.

strikes the left wall, at t ≈ 0.4, the energies decrease almost linearly with time, but
the energy losses appear to converge to 0 as h → 0. As the cavity shrinks, there
appears to be substantial energy loss for 0.4 6 t 6 0.55. After the re-expansion of
the cavity, for 0.55 6 t 6 0.75, the energy loss is negligible. The energy loss on the
finer grids after t = 0.75 is due to the upper surface of the cavity impacting the top
of the domain (also modelled as a solid wall).

The work of W.G.S. has been supported under the Independent Research program of the Naval
Surface Warfare Center and by the Office of Naval Research, Code 311. The experimental tests
shown in figure 4 were supported by the Office of Naval Research, Code 351. Both of us have
a continuing indebtedness to our collaborators, A. E. Berger and J. M. Solomon, whose active
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role in the development of the numerical methods used here will be evident from a perusal of
the references.
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